Tag Archives: hollow shaft

China best ZD Right Angle Hollow Shaft High Performance Helical Hypoid Gear Motor with high quality

Product Description

Introduction

ZD Leader has a wide range of micro motor production lines in the industry, including DC gear motor, AC gear motor,brushless DC motor,planetary gear motor, helical AC gear motor, hypoid gear motor, drum motor and planetary gearbox, etc. Through technical innovation and customization, we help you create outstanding application systems and provide flexible solutions for various industrial automation situations. We have a comprehensive global product development network, with pre-sales and after-sales centers in the United States, Germany, Japan, India, Vietnam and other countries.

Our Advantages

Range Of Gear Motor

Pleas click the click button to view more detailed specification for each serie of Gear Motor.

After Sales Service

Customized Product Service

Company Profile

FAQ

Q: What’re your main products?
A: We currently produce Brushed Dc Motors, Brushed Dc Gear Motors, Planetary Dc Gear Motors, Brushless Dc Motors, Stepper motors, Ac Motors and High Precision Planetary Gear Box etc. You can check the specifications for above motors on our website and you can email us to recommend needed motors per your specification too.

Q: How to select a suitable motor?
A:If you have motor pictures or drawings to show us, or you have detailed specs like voltage, speed, torque, motor size, working mode of the motor, needed lifetime and noise level etc, please do not hesitate to let us know, then we can recommend suitable motor per your request accordingly.

Q: Do you have a customized service for your standard motors?
A: Yes, we can customize per your request for the voltage, speed, torque and shaft size/shape. If you need additional wires/cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: Do you have an individual design service for motors?
A: Yes, we would like to design motors individually for our customers, but it may need some mold developing cost and design charge.

Q: What’s your lead time?
A: Generally speaking, our regular standard product will need 15-30days, a bit longer for customized products. But we are very flexible on the lead time, it will depend on the specific orders.

Please contact us if you have detailed requests, thank you !

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Operating Speed: Constant Speed
Number of Stator: Single-Phase
Species: Y, Y2 Series Three-Phase
Rotor Structure: Winding Type
Casing Protection: Closed Type
Number of Poles: 2
Customization:
Available

|

gear motor

Are there innovations or emerging technologies in the field of gear motor design?

Yes, there are several innovations and emerging technologies in the field of gear motor design. These advancements aim to improve the performance, efficiency, compactness, and reliability of gear motors. Here are some notable innovations and emerging technologies in gear motor design:

1. Miniaturization and Compact Design:

Advancements in manufacturing techniques and materials have enabled the miniaturization of gear motors without compromising their performance. Gear motors with compact designs are highly sought after in applications where space is limited, such as robotics, medical devices, and consumer electronics. Innovative approaches like micro-gear motors and integrated motor-gear units are being developed to achieve smaller form factors while maintaining high torque and efficiency.

2. High-Efficiency Gearing:

New gear designs focus on improving efficiency by reducing friction and mechanical losses. Advanced gear manufacturing techniques, such as precision machining and 3D printing, allow for the creation of intricate gear tooth profiles that optimize power transmission and minimize losses. Additionally, the use of high-performance materials, coatings, and lubricants helps reduce friction and wear, improving overall gear motor efficiency.

3. Magnetic Gearing:

Magnetic gearing is an emerging technology that replaces traditional mechanical gears with magnetic fields to transmit torque. It utilizes the interaction of permanent magnets to transfer power, eliminating the need for physical gear meshing. Magnetic gearing offers advantages such as high efficiency, low noise, compactness, and maintenance-free operation. While still being developed and refined, magnetic gearing holds promise for various applications, including gear motors.

4. Integrated Electronics and Controls:

Gear motor designs are incorporating integrated electronics and controls to enhance performance and functionality. Integrated motor drives and controllers simplify system integration, reduce wiring complexity, and allow for advanced control features. These integrated solutions offer precise speed and torque control, intelligent feedback mechanisms, and connectivity options for seamless integration into automation systems and IoT (Internet of Things) platforms.

5. Smart and Condition Monitoring Capabilities:

New gear motor designs incorporate smart features and condition monitoring capabilities to enable predictive maintenance and optimize performance. Integrated sensors and monitoring systems can detect abnormal operating conditions, track performance parameters, and provide real-time feedback for proactive maintenance and troubleshooting. This helps prevent unexpected failures, extend the lifespan of gear motors, and improve overall system reliability.

6. Energy-Efficient Motor Technologies:

Gear motor design is influenced by advancements in energy-efficient motor technologies. Brushless DC (BLDC) motors and synchronous reluctance motors (SynRM) are gaining popularity due to their higher efficiency, better power density, and improved controllability compared to traditional brushed DC and induction motors. These motor technologies, when combined with optimized gear designs, contribute to overall system energy savings and performance improvements.

These are just a few examples of the innovations and emerging technologies in gear motor design. The field is continuously evolving, driven by the need for more efficient, compact, and reliable motion control solutions in various industries. Gear motor manufacturers and researchers are actively exploring new materials, manufacturing techniques, control strategies, and system integration approaches to meet the evolving demands of modern applications.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

What is a gear motor, and how does it combine the functions of gears and a motor?

A gear motor is a type of motor that incorporates gears into its design to combine the functions of gears and a motor. It consists of a motor, which provides the mechanical power, and a set of gears, which transmit and modify this power to achieve specific output characteristics. Here’s a detailed explanation of what a gear motor is and how it combines the functions of gears and a motor:

A gear motor typically consists of two main components: the motor and the gear system. The motor is responsible for converting electrical energy into mechanical energy, generating rotational motion. The gear system, on the other hand, consists of multiple gears with different sizes and tooth configurations. These gears are meshed together in a specific arrangement to transmit and modify the output torque and speed of the motor.

The gears in a gear motor serve several functions:

1. Torque Amplification:

One of the primary functions of the gear system in a gear motor is to amplify the torque output of the motor. By using gears with different sizes, the input torque can be effectively multiplied or reduced. This allows the gear motor to provide higher torque at lower speeds or lower torque at higher speeds, depending on the gear arrangement. This torque amplification is beneficial in applications where high torque is required, such as in heavy machinery or vehicles.

2. Speed Reduction or Increase:

The gear system in a gear motor can also be used to reduce or increase the rotational speed of the motor output. By utilizing gears with different numbers of teeth, the gear ratio can be adjusted to achieve the desired speed output. For example, a gear motor with a higher gear ratio will output lower speed but higher torque, whereas a gear motor with a lower gear ratio will output higher speed but lower torque. This speed control capability allows for precise matching of motor output to the requirements of specific applications.

3. Directional Control:

Gears in a gear motor can be used to control the direction of rotation of the motor output shaft. By employing different combinations of gears, such as spur gears, bevel gears, or worm gears, the rotational direction can be changed. This directional control is crucial in applications where bidirectional movement is required, such as in conveyor systems or robotic arms.

4. Load Distribution:

The gear system in a gear motor helps distribute the load evenly across multiple gears, which reduces the stress on individual gears and increases the overall durability and lifespan of the motor. By sharing the load among multiple gears, the gear motor can handle higher torque applications without putting excessive strain on any particular gear. This load distribution capability is especially important in heavy-duty applications that require continuous operation under demanding conditions.

By combining the functions of gears and a motor, gear motors offer several advantages. They provide torque amplification, speed control, directional control, and load distribution capabilities, making them suitable for various applications that require precise and controlled mechanical power. Gear motors are commonly used in industries such as robotics, automotive, manufacturing, and automation, where reliable and efficient power transmission is essential.

China best ZD Right Angle Hollow Shaft High Performance Helical Hypoid Gear Motor   with high quality China best ZD Right Angle Hollow Shaft High Performance Helical Hypoid Gear Motor   with high quality
editor by CX 2024-05-17

China manufacturer 3-Phase Electromagnetic Brake Hollow Shaft Gear Reducer Motor with high quality

Product Description

TaiBang Motor Industry Group Co., Ltd. 
Select method
RK gear motor Series , IK gear motor Series,  Constant speed motor type,  Speed control motor type, Three phase 220V motor type,
Three phase 380V motor type,Fan motor type,Brake motor type

STHangZhouRD CHINAMFG CODE MEANING (FOR AC SMALL GEAR MOTOR)

1.Shell type 2 means 60mm,3 means 70mm,4 means 80mm,5 means 90mm,6 means 100mm(the dia of the motor shell)
2.motor type code IK means induction motor( note:single phase motor have 4 leading wire ,all 3 phase motors are induction
motor,60mm motor does not have induction type , ),RK means reversible motor(single phase motor have 3 leading wire)
3.motor power code 6 means 6W,15 means 15W,20means 20W,25 means 25W,40 means 40W,……200 means 200W
4.speed control type code with R means speed control type , without R means fixed speed
5.motor shaft code GN means tooth shaft ,A1 means circular shaft with flat face, A2 means circular shaft with key slot
6.voltage code A means 110V,C means 220V,S means 3ph220V,S3 means 3ph380V,SS3 means 3ph220V/380V
7.Terminal box code L means leading wire 450mm,TT means terminal box with terminal block ,TC means terminal box with capacitor inside
8. T-box/leadwire direction A means left of shaft ,B means down of shaft,C means right of shaft, D means CHINAMFG of shaft, See from the sight of shaft , default direction is B,see attachment
9.Leadwire of T-box direction U: up D: down L : left R: right ,See from the front sight of terminal box , default direction is D ,See attached
10.Thermal protector code P means thermal protector, without means without thermal protector
11.cooling fan code F means cooling fan, without means without cooling fan ,M means with magnet brake,FM means with magnet brake and  cooling fan
12.gearbox type code 2 means 60mm,3 means 70mm,4 means 80mm,5 means 90mm,6 means 104mm(the flange of the square gearbox shell)
13.gearbox flange type code GN means square type gearbox ,GS means ear flange type gearbox
14.speed ratio code 3,5,6,7.5,10,12.5,15,18,20,25,30,36,40,50,60,75,90,100,120,150,180,200,250,300,500,750
15.bearing type code K means standard ball bearing , RT means right angle CHINAMFG shaft , RC means right angle hollow shaft
16.shaft dia code G8 means 8mm dia shaft,G10 means 10mm dia shaft, G12 means 12mm dia shaft, G15 means 15mm dia shaft
17.connection screw code L means screw hole , T means through hole type
18.key slot code K3 means 3*3*18mm ,K4 means 4*4*25 key K5 means 5*5*25 key ,F1 means flat face1*25 , F2 means flat face 1*20
 

Basic tech data:  
Motor type: AC gear motor            Insulation Class:E
Motor material:Aluminum ,Copper,Steel IP grade:IP44
Rotation:CW/CCW reversible Working style:S1
Frequency: 50Hz/60Hz Operating temperature range: -10 °C~ Operating relative humidity: 95% Below

Motor Specification and Tech Data

TYPE Rated Power Nominal voltage Noload Speed Rated Speed Rated Current Rated Torque Stall Current Stall Torque
W V rpm rpm A N.m A N.m
2RK6A-CA2 6 1ph220V 1450 1200 0.12 0.049 0.2184 0.09
2RK6RA-CA2 6 1ph220V 1450 1200 0.12 0.049 0.2184 0.09
2RK10A-CA2 10 1ph220V 1450 1200 0.15 0.082 0.273 0.15
2RK10RA-CA2 10 1ph220V 1450 1200 0.15 0.082 0.273 0.15
3RK15A-CA2 15 1ph220V 1450 1200 0.20 0.125 0.364 0.23
3RK15RA-CA2 15 1ph220V 1450 1200 0.20 0.125 0.364 0.23
3RK20RA-CA2 20 1ph220V 1450 1200 0.25 0.182 0.455 0.33
3RK20RA-CA2 20 1ph220V 1450 1200 0.25 0.182 0.455 0.33
4RK25A-CA2 25 1ph220V 1450 1200 0.30 0.195 0.546 0.35
4RK25RA-CA2 25 1ph220V 1450 1200 0.30 0.195 0.546 0.35
4RK30A-CA2 30 1ph220V 1450 1200 0.35 0.235 0.637 0.43
4RK30RA-CA2 30 1ph220V 1450 1200 0.35 0.235 0.637 0.43
4RK40A-CA2 40 1ph220V 1450 1200 0.45 0.30 0.819 0.55
4RK40RA-CA2 40 1ph220V 1450 1200 0.45 0.30 0.819 0.55
5RK40A-CA1 40 1ph220V 1450 1300 0.45 0.30 0.819 0.55
5RK40RA-CA1 40 1ph220V 1450 1300 0.45 0.30 0.819 0.55
5RK60A-CFA1 60 1ph220V 1450 1300 0.55 0.45 1.001 0.82
5RK60RA-CFA1 60 1ph220V 1450 1300 0.55 0.45 1.001 0.82
5RK90A-CFA1 90 1ph220V 1450 1300 0.95 0.68 1.729 1.24
5RK90RA-CFA1 90 1ph220V 1450 1300 0.95 0.68 1.729 1.24
5RK120A-CFA1 120 1ph220V 1450 1300 1.15 0.90 2.093 1.64
5RK120RA-CFA1 120 1ph220V 1450 1300 1.15 0.90 2.093 1.64
6RK120A-CFA1 120 1ph220V 1450 1300 1.2 0.90 2.184 1.64
6RK120RA-CFA1 120 1ph220V 1450 1300 1.2 0.90 2.184 1.64
6RK140A-CFA1 140 1ph220V 1450 1300 1.4 1.05 2.548 1.91
6RK140RA-CFA1 140 1ph220V 1450 1300 1.4 1.05 2.548 1.91
6RK160A-CFA1 160 1ph220V 1450 1300 1.6 1.20 2.912 2.18
6RK160RA-CFA1 160 1ph220V 1450 1300 1.6 1.20 2.912 2.18
6RK180A-CFA1 180 1ph220V 1450 1300 1.8 1.35 3.276 2.46
6RK180RA-CFA1 180 1ph220V 1450 1300 1.8 1.35 3.276 2.46
6RK200A-CFA1 200 1ph220V 1450 1300 1.9 1.50 3.458 2.73
6RK200RA-CFA1 200 1ph220V 1450 1300 1.9 1.50 3.458 2.73
6RK250A-CFA1 250 1ph220V 1450 1300 2.1 1.65 3.822 3.00
6RK250RA-CFA1 250 1ph220V 1450 1300 2.1 1.65 3.822 3.00 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industrial
Speed: Constant Speed
Number of Stator: Single-Phase
Function: Driving
Casing Protection: Protection Type
Number of Poles: 4
Samples:
US$ 30/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

What are the maintenance requirements for gear motors, and how can longevity be maximized?

Gear motors, like any mechanical system, require regular maintenance to ensure optimal performance and longevity. Proper maintenance practices help prevent failures, minimize downtime, and extend the lifespan of gear motors. Here are some maintenance requirements for gear motors and ways to maximize their longevity:

1. Lubrication:

Regular lubrication is essential for gear motors to reduce friction, wear, and heat generation. The gears, bearings, and other moving parts should be properly lubricated according to the manufacturer’s recommendations. Lubricants should be selected based on the motor’s specifications and operating conditions. Regular inspection and replenishment of lubricants, as well as periodic oil or grease changes, should be performed to maintain optimal lubrication levels and ensure long-lasting performance.

2. Inspection and Cleaning:

Regular inspection and cleaning of gear motors are crucial for identifying any signs of wear, damage, or contamination. Inspecting the gears, bearings, shafts, and connections can help detect any abnormalities or misalignments. Cleaning the motor’s exterior and ventilation channels to remove dust, debris, or moisture buildup is also important in preventing malfunctions and maintaining proper cooling. Any loose or damaged components should be repaired or replaced promptly.

3. Temperature and Environmental Considerations:

Monitoring and controlling the temperature and environmental conditions surrounding gear motors can significantly impact their longevity. Excessive heat can degrade lubricants, damage insulation, and lead to premature component failure. Ensuring proper ventilation, heat dissipation, and avoiding overloading the motor can help manage temperature effectively. Similarly, protecting gear motors from moisture, dust, chemicals, and other environmental contaminants is vital to prevent corrosion and damage.

4. Load Monitoring and Optimization:

Monitoring and optimizing the load placed on gear motors can contribute to their longevity. Operating gear motors within their specified load and speed ranges helps prevent excessive stress, overheating, and premature wear. Avoiding sudden and frequent acceleration or deceleration, as well as preventing overloading or continuous operation near the motor’s maximum capacity, can extend its lifespan.

5. Alignment and Vibration Analysis:

Proper alignment of gear motor components, such as gears, couplings, and shafts, is crucial for smooth and efficient operation. Misalignment can lead to increased friction, noise, and premature wear. Regularly checking and adjusting alignment, as well as performing vibration analysis, can help identify any misalignment or excessive vibration that may indicate underlying issues. Addressing alignment and vibration problems promptly can prevent further damage and maximize the motor’s longevity.

6. Preventive Maintenance and Regular Inspections:

Implementing a preventive maintenance program is essential for gear motors. This includes establishing a schedule for routine inspections, lubrication, and cleaning, as well as conducting periodic performance tests and measurements. Following the manufacturer’s guidelines and recommendations for maintenance tasks, such as belt tension checks, bearing replacements, or gear inspections, can help identify and address potential issues before they escalate into major failures.

By adhering to these maintenance requirements and best practices, the longevity of gear motors can be maximized. Regular maintenance, proper lubrication, load optimization, temperature control, and timely repairs or replacements of worn components contribute to the reliable operation and extended lifespan of gear motors.

gear motor

Are there environmental benefits to using gear motors in certain applications?

Yes, there are several environmental benefits associated with the use of gear motors in certain applications. Gear motors offer advantages that can contribute to increased energy efficiency, reduced resource consumption, and lower environmental impact. Here’s a detailed explanation of the environmental benefits of using gear motors:

1. Energy Efficiency:

Gear motors can improve energy efficiency in various ways:

  • Torque Conversion: Gear reduction allows gear motors to deliver higher torque output while operating at lower speeds. This enables the motor to perform tasks that require high torque, such as lifting heavy loads or driving machinery with high inertia, more efficiently. By matching the motor’s power characteristics to the load requirements, gear motors can operate closer to their peak efficiency, minimizing energy waste.
  • Controlled Speed: Gear reduction provides finer control over the motor’s rotational speed. This allows for more precise speed regulation, reducing the likelihood of energy overconsumption and optimizing energy usage.

2. Reduced Resource Consumption:

The use of gear motors can lead to reduced resource consumption and environmental impact:

  • Smaller Motor Size: Gear reduction allows gear motors to deliver higher torque with smaller, more compact motors. This reduction in motor size translates to reduced material and resource requirements during manufacturing. It also enables the use of smaller and lighter equipment, which can contribute to energy savings during operation and transportation.
  • Extended Motor Lifespan: The gear mechanism in gear motors helps reduce the load and stress on the motor itself. By distributing the load more evenly, gear motors can help extend the lifespan of the motor, reducing the need for frequent replacements and the associated resource consumption.

3. Noise Reduction:

Gear motors can contribute to a quieter and more environmentally friendly working environment:

  • Noise Dampening: Gear reduction can help reduce the noise generated by the motor. The gear mechanism acts as a noise dampener, absorbing and dispersing vibrations and reducing overall noise emission. This is particularly beneficial in applications where noise reduction is important, such as residential areas, offices, or noise-sensitive environments.

4. Precision and Control:

Gear motors offer enhanced precision and control, which can lead to environmental benefits:

  • Precise Positioning: Gear motors, especially stepper motors and servo motors, provide precise positioning capabilities. This accuracy allows for more efficient use of resources, minimizing waste and optimizing the performance of machinery or systems.
  • Optimized Control: Gear motors enable precise control over speed, torque, and movement. This control allows for better optimization of processes, reducing energy consumption and minimizing unnecessary wear and tear on equipment.

In summary, using gear motors in certain applications can have significant environmental benefits. Gear motors offer improved energy efficiency, reduced resource consumption, noise reduction, and enhanced precision and control. These advantages contribute to lower energy consumption, reduced environmental impact, and a more sustainable approach to power transmission and control. When selecting motor systems for specific applications, considering the environmental benefits of gear motors can help promote energy efficiency and sustainability.

gear motor

Are there specific considerations for selecting the right gear motor for a particular application?

When selecting a gear motor for a specific application, several considerations need to be taken into account. The choice of the right gear motor is crucial to ensure optimal performance, efficiency, and reliability. Here’s a detailed explanation of the specific considerations for selecting the right gear motor for a particular application:

1. Torque Requirement:

The torque requirement of the application is a critical factor in gear motor selection. Determine the maximum torque that the gear motor needs to deliver to perform the required tasks. Consider both the starting torque (the torque required to initiate motion) and the operating torque (the torque required to sustain motion). Select a gear motor that can provide adequate torque to handle the load requirements of the application. It’s important to account for any potential torque spikes or variations during operation.

2. Speed Requirement:

Consider the desired speed range or specific speed requirements of the application. Determine the rotational speed (in RPM) that the gear motor needs to achieve to meet the application’s performance criteria. Select a gear motor with a suitable gear ratio that can achieve the desired speed at the output shaft. Ensure that the gear motor can maintain the required speed consistently and accurately throughout the operation.

3. Duty Cycle:

Evaluate the duty cycle of the application, which refers to the ratio of operating time to rest or idle time. Consider whether the application requires continuous operation or intermittent operation. Determine the duty cycle’s impact on the gear motor, including factors such as heat generation, cooling requirements, and potential wear and tear. Select a gear motor that is designed to handle the expected duty cycle and ensure long-term reliability and durability.

4. Environmental Factors:

Take into account the environmental conditions in which the gear motor will operate. Consider factors such as temperature extremes, humidity, dust, vibrations, and exposure to chemicals or corrosive substances. Choose a gear motor that is specifically designed to withstand and perform optimally under the anticipated environmental conditions. This may involve selecting gear motors with appropriate sealing, protective coatings, or materials that can resist corrosion and withstand harsh environments.

5. Efficiency and Power Requirements:

Consider the desired efficiency and power consumption of the gear motor. Evaluate the power supply available for the application and select a gear motor that operates within the specified voltage and current ranges. Assess the gear motor’s efficiency to ensure that it maximizes power transmission and minimizes wasted energy. Choosing an efficient gear motor can contribute to cost savings and reduced environmental impact.

6. Physical Constraints:

Assess the physical constraints of the application, including space limitations, mounting options, and integration requirements. Consider the size, dimensions, and weight of the gear motor to ensure it can be accommodated within the available space. Evaluate the mounting options and compatibility with the application’s mechanical structure. Additionally, consider any specific integration requirements, such as shaft dimensions, connectors, or interfaces that need to align with the application’s design.

7. Noise and Vibration:

Depending on the application, noise and vibration levels may be critical factors. Evaluate the acceptable noise and vibration levels for the application’s environment and operation. Choose a gear motor that is designed to minimize noise and vibration, such as those with helical gears or precision engineering. This is particularly important in applications that require quiet operation or where excessive noise and vibration may cause issues or discomfort.

By considering these specific factors when selecting a gear motor for a particular application, you can ensure that the chosen gear motor meets the performance requirements, operates efficiently, and provides reliable and consistent power transmission. It’s important to consult with gear motor manufacturers or experts to determine the most suitable gear motor based on the specific application’s needs.

China manufacturer 3-Phase Electromagnetic Brake Hollow Shaft Gear Reducer Motor   with high quality China manufacturer 3-Phase Electromagnetic Brake Hollow Shaft Gear Reducer Motor   with high quality
editor by CX 2024-03-26

China Best Sales Parallel Helical Industrial Gear Motor with Hollow Shaft with Good quality

Product Description

Starshine Drive F series Parallel Shaft-Helical Geared Motor
Features:
-High efficiency: 92%-94%;
-Parallel output, compact structure, large output torque, smooth operation, low noise and long service life.
-High precision: the gear is made of high-quality alloy steel forging, carbonitriding and hardening treatment, grinding process to ensure high precision and stable running.
-High interchangeability: highly modular, serial design, strong versatility and interchangeability.

Technical parameters

Ratio 3.77-276.77
Input power 0.12-200KW
Output torque 3.5-21700N.m
Output speed 5-352rpm
Mounting type Foot mounted, foot mounted with CHINAMFG shaft, output flange mounted, hollow shaft mounted, B5 flange mounted with hollow shaft, foot mounted with hollow shaft, B14 flange mounted with hollow shaft, foot mounted with splined hole, foot mounted with shrink disk, hollow shaft mounted with anti-torque arm.
Input Method Flange input(AM), shaft input(AD), inline AC motor input, or AQA servo motor
Brake Release HF-manual release(lock in the brake release position), HR-manual release(autom-atic braking position)
Thermistor TF(Thermistor protection PTC thermisto)
TH(Thermistor protection Bimetal swotch)
Mounting Position M1, M2, M3, M4, M5, M6
Type F37-F157
Output shaft dis. 25mm, 30mm, 35mm, 40mm, 50mm, 60mm, 70mm, 90mm, 110mm, 120mm
Housing material HT200 high-strength cast iron from R37,47,57,67,77,87
Housing material HT250 High strength cast iron from R97 107,137,147,
157,167,187
Heat treatment technology carbonitriding and hardening treatment
Efficiency 92%-94%
Lubricant VG220
Protection Class IP55, F class

ABOUT CHINAMFG DRIVE

ZheJiang CHINAMFG Drive Co.,Ltd(Starshine) have a strong technical force with over 350 employees at present, including over 30 engineering technicians, 30 quality inspectors, covering an area of 80000 square CHINAMFG and kinds of advanced processing machines and testing equipments. We have a good foundation for the industry application development and service of high-end speed reducers & variators owning to the provincial engineering technology research center,the lab of gear speed reducers, and the base of modern R&D.

Our are products widely used in ceramic industry, glass industry, woodworking machinery , high voltage switch, food & beverage, packaging & printing, Storage & logistics, hoisting & transportation facilities…etc , and CHINAMFG technically provide the professional product & service for the medium and high-end customers, and our gearboxes are best-selling in domestic, and even in abroad , such as in Europe, North America, South America, Middle East, South Asia, Southeast Asia, Africa…etc.

 In the future , CHINAMFG will hold the creed of “serving customer, diligence & simplicity, self-criticism, innovation, honesty, teamwork”, and the concept of “quality creates value” to focus on the customers’ requirements and provide them the competitive transmission solution and create value for them constantly, and make a high-end equipment manufacturing industry and create a preferred brand of replacing import products and upgrading continuously for the end users.

OUR TEAM 

QUALITY CONTROL
Quality:Insist on Improvement,Strive for CHINAMFG With the development of equipment manufacturing indurstry,customer never satirsfy with the current quality of our products,on the contrary,wcreate the value of quality.
Quality policy:to enhance the overall level in the field of power transmission  
Quality View:Continuous Improvement , pursuit of CHINAMFG
Quality Philosophy:Quality creates value

3. Incoming Quality Control
To establish the AQL acceptable level of incoming material control, to provide the material for the whole inspection, sampling, immunity. On the acceptance of qualified products to warehousing, substandard goods to take return, check, rework, rework inspection; responsible for tracking bad, to monitor the supplier to take corrective measures to prevent recurrence.

4. Process Quality Control
The manufacturing site of the first examination, inspection and final inspection, sampling according to the requirements of some projects, judging the quality change trend; found abnormal phenomenon of manufacturing, and supervise the production department to improve, eliminate the abnormal phenomenon or state.

5. FQC(Final QC)
After the manufacturing department will complete the product, stand in the customer’s position on the finished product quality verification, in order to ensure the quality of customer expectations and needs.

6. OQC(Outgoing QC)
After the product sample inspection to determine the qualified, allowing storage, but when the finished product from the warehouse before the formal delivery of the goods, there is a check, this is called the shipment inspection.Check content:In the warehouse storage and transfer status to confirm, while confirming the delivery of the product is a product inspection to determine the qualified products.

PACKING 

DELIVERY

  
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Shunting
Gear Shape: Helical Gear
Step: Double-Step
Customization:
Available

|

gear motor

What types of feedback mechanisms are commonly integrated into gear motors for control?

Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:

1. Encoder Feedback:

An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:

  • Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
  • Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.

2. Hall Effect Sensors:

Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.

3. Current Sensors:

Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.

4. Temperature Sensors:

Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.

5. Hall Effect Limit Switches:

Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.

6. Resolver Feedback:

A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.

These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.

gear motor

How does the voltage and power rating of a gear motor impact its suitability for different tasks?

The voltage and power rating of a gear motor are important factors that influence its suitability for different tasks. These specifications determine the motor’s electrical characteristics and its ability to perform specific tasks effectively. Here’s a detailed explanation of how voltage and power rating impact the suitability of a gear motor for different tasks:

1. Voltage Rating:

The voltage rating of a gear motor refers to the electrical voltage it requires to operate optimally. Here’s how the voltage rating affects suitability:

  • Compatibility with Power Supply: The gear motor’s voltage rating must match the available power supply. Using a motor with a voltage rating that is too high or too low for the power supply can lead to improper operation or damage to the motor.
  • Electrical Safety: Adhering to the specified voltage rating ensures electrical safety. Using a motor with a higher voltage rating than recommended can pose safety hazards, while using a motor with a lower voltage rating may result in inadequate performance.
  • Application Flexibility: Different tasks or applications may have specific voltage requirements. For example, low-voltage gear motors are commonly used in battery-powered devices or applications with low-power requirements, while high-voltage gear motors are suitable for industrial applications or tasks that require higher power output.

2. Power Rating:

The power rating of a gear motor indicates its ability to deliver mechanical power. It is typically specified in units of watts (W) or horsepower (HP). The power rating impacts the suitability of a gear motor in the following ways:

  • Load Capacity: The power rating determines the maximum load that a gear motor can handle. Motors with higher power ratings are capable of driving heavier loads or handling tasks that require more torque.
  • Speed and Torque: The power rating affects the motor’s speed and torque characteristics. Motors with higher power ratings generally offer higher speeds and greater torque output, making them suitable for applications that require faster operation or the ability to overcome higher resistance or loads.
  • Efficiency and Energy Consumption: The power rating is related to the motor’s efficiency and energy consumption. Higher power-rated motors may be more efficient, resulting in lower energy losses and reduced operating costs over time.
  • Thermal Considerations: Motors with higher power ratings may generate more heat during operation. It is crucial to consider the motor’s power rating in relation to its thermal management capabilities to prevent overheating and ensure long-term reliability.

Considerations for Task Suitability:

When selecting a gear motor for a specific task, it is important to consider the following factors in relation to the voltage and power rating:

  • Required Torque and Load: Assess the torque and load requirements of the task to ensure that the gear motor’s power rating is sufficient to handle the expected load without being overloaded.
  • Speed and Precision: Consider the desired speed and precision of the task. Motors with higher power ratings generally offer better speed control and accuracy.
  • Power Supply Availability: Evaluate the availability and compatibility of the power supply with the gear motor’s voltage rating. Ensure that the power supply can provide the required voltage for the motor’s optimal operation.
  • Environmental Factors: Consider any specific environmental factors, such as temperature or humidity, that may impact the gear motor’s performance. Ensure that the motor’s voltage and power ratings are suitable for the intended operating conditions.

In summary, the voltage and power rating of a gear motor have significant implications for its suitability in different tasks. The voltage rating determines compatibility with the power supply and ensures electrical safety, while the power rating influences load capacity, speed, torque, efficiency, and thermal considerations. When choosing a gear motor, it is crucial to carefully evaluate the task requirements and consider the voltage and power rating in relation to factors such as torque, speed, power supply availability, and environmental conditions.

gear motor

How does the gearing mechanism in a gear motor contribute to torque and speed control?

The gearing mechanism in a gear motor plays a crucial role in controlling torque and speed. By utilizing different gear ratios and configurations, the gearing mechanism allows for precise manipulation of these parameters. Here’s a detailed explanation of how the gearing mechanism contributes to torque and speed control in a gear motor:

The gearing mechanism consists of multiple gears with varying sizes, tooth configurations, and arrangements. Each gear in the system engages with another gear, creating a mechanical connection. When the motor rotates, it drives the rotation of the first gear, which then transfers the motion to subsequent gears, ultimately resulting in the output shaft’s rotation.

Torque Control:

The gearing mechanism in a gear motor enables torque control through the principle of mechanical advantage. The gear system utilizes gears with different numbers of teeth, known as gear ratio, to adjust the torque output. When a smaller gear (pinion) engages with a larger gear (gear), the pinion rotates faster than the gear but exerts more force or torque. This results in torque amplification, allowing the gear motor to deliver higher torque at the output shaft while reducing the rotational speed. Conversely, if a larger gear engages with a smaller gear, torque reduction occurs, resulting in higher rotational speed at the output shaft.

By selecting the appropriate gear ratio, the gearing mechanism effectively adjusts the torque output of the gear motor to match the requirements of the application. This torque control capability is essential in applications that demand high torque for heavy lifting or overcoming resistance, as well as applications that require lower torque but higher rotational speed.

Speed Control:

The gearing mechanism also contributes to speed control in a gear motor. The gear ratio determines the relationship between the rotational speed of the input shaft (driven by the motor) and the output shaft. When a gear motor has a higher gear ratio (more teeth on the driven gear compared to the driving gear), it reduces the output speed while increasing the torque. Conversely, a lower gear ratio increases the output speed while reducing the torque.

By choosing the appropriate gear ratio, the gearing mechanism allows for precise speed control in a gear motor. This is particularly useful in applications that require specific speed ranges or variations, such as conveyor systems, robotic movements, or machinery that needs to operate at different speeds for different tasks. The speed control capability of the gearing mechanism enables the gear motor to match the desired speed requirements of the application accurately.

In summary, the gearing mechanism in a gear motor contributes to torque and speed control by utilizing different gear ratios and configurations. It enables torque amplification or reduction, depending on the gear arrangement, allowing the gear motor to deliver the required torque output. Additionally, the gear ratio also determines the relationship between the rotational speed of the input and output shafts, providing precise speed control. These torque and speed control capabilities make gear motors versatile and suitable for a wide range of applications in various industries.

China Best Sales Parallel Helical Industrial Gear Motor with Hollow Shaft   with Good quality China Best Sales Parallel Helical Industrial Gear Motor with Hollow Shaft   with Good quality
editor by CX 2024-03-07

China wholesaler Foot Mounted Output Hollow Shaft Helical-Bevel Gear Motor with Best Sales

Product Description

Detailed Photos

Product Description

High modular design, biomimetic surface with owned intellectual property right.Adopt German worm hob to process the worm wheel.
With the special gear geometry, it gets high torque, efficiency and long life circle.It can achieve the direct combination for two
sets of gearbox.
Mounting mode: foot mounted, flange mounted, torque arm mounted.Output shaft: CHINAMFG shaft, hollow shaft.

 

Product Parameters

 

Technical data:

Housing material

Cast iron/Ductile iron

Housing hardness

HBS190-240

Gear material

20CrMnTi alloy steel

Surface hardness of gears

HRC58°~62 °

Gear core hardness

HRC33~40

Input / Output shaft material

42CrMo alloy steel

Input / Output shaft hardness

HRC25~30

Machining precision of gears

accurate grinding, 6~5 Grade

Lubricating oil

GB L-CKC220-460, Shell Omala220-460

Heat treatment

tempering, cementiting, quenching, etc.

Efficiency

94%~96% (depends on the transmission stage)

Noise (MAX)

60~68dB

Temp. rise (MAX)

40°C

Temp. rise (Oil)(MAX)

50°C

Vibration

≤20µm

Backlash

≤20Arcmin

Brand of bearings

China top brand bearing, HRB/LYC/ZWZ/C&U. Or other brands requested, SKF, FAG, INA, NSK.

Brand of oil seal

CHINAMFG — ZheJiang or other brands requested

Our Advantages

 

Packaging & Shipping

 

 

Certifications

Company Profile

Xihu (West Lake) Dis.ng Transmission Equipment Co., Ltd. located HangZhou city, ZHangZhoug, as 1 professional manufacturer
and exporter of cycloidal pin wheel reducer,worm reducer, gear reducer, gearbox , AC motor and relative spare
parts, owns rich experience in this line for many years.

We are 1 direct factory, with advanced production equipment, the strong development team and producing
capacity to offer quality products for customers.

Our products widely served to various industries of Metallurgy, Chemicals, textile,medicine,wooden etc. Main
markets: China, Africa,Australia,Vietnam, Turkey,Japan, Korea, Philippines…

Welcome to ask us any questions, good offer always for you for long term business.

 

FAQ

Q: Are you trading company or manufacturer?
A: We are factory.
 

Q: How long is your delivery time?
A: Generally it is 5-10 days if the goods are in stock. or it is 15-20 days if the goods are not in stock.
 

Q: Can we buy 1 pc of each item for quality testing?
A: Yes, we are glad to accept trial order for quality testing.

Q:How to choose a gearbox which meets your requirement?
A:You can refer to our catalogue to choose the gearbox or we can help to choose when you provide
the technical information of required output torque, output speed and motor parameter etc.

Q: What information shall we give before placing a purchase order?
A:a) Type of the gearbox, ratio, input and output type, input flange, mounting position, and motor informationetc.
b) Housing color.
c) Purchase quantity.
d) Other special requirements.

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Motor, Machinery, Marine, Agricultural Machinery
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Worm Gear
Step: Single-Step

gear motor

What types of feedback mechanisms are commonly integrated into gear motors for control?

Gear motors often incorporate feedback mechanisms to provide control and improve their performance. These feedback mechanisms enable the motor to monitor and adjust its operation based on various parameters. Here are some commonly integrated feedback mechanisms in gear motors:

1. Encoder Feedback:

An encoder is a device that provides position and speed feedback by converting the motor’s mechanical motion into electrical signals. Encoders commonly used in gear motors include:

  • Incremental Encoders: These encoders provide information about the motor’s shaft position and speed relative to a reference point. They generate pulses as the motor rotates, allowing precise measurement of position and speed changes.
  • Absolute Encoders: Absolute encoders provide the precise position of the motor’s shaft within a full revolution. They do not require a reference point and provide accurate feedback even after power loss or motor restart.

2. Hall Effect Sensors:

Hall effect sensors use the principle of the Hall effect to detect the presence and strength of a magnetic field. They are commonly used in gear motors for speed and position sensing. Hall effect sensors provide feedback by detecting changes in the motor’s magnetic field and converting them into electrical signals.

3. Current Sensors:

Current sensors monitor the electrical current flowing through the motor’s windings. By measuring the current, these sensors provide feedback regarding the motor’s torque, load conditions, and power consumption. Current sensors are essential for motor control strategies such as current limiting, overcurrent protection, and closed-loop control.

4. Temperature Sensors:

Temperature sensors are integrated into gear motors to monitor the motor’s temperature. They provide feedback on the motor’s thermal conditions, allowing the control system to adjust the motor’s operation to prevent overheating. Temperature sensors are crucial for ensuring the motor’s reliability and preventing damage due to excessive heat.

5. Hall Effect Limit Switches:

Hall effect limit switches are used to detect the presence or absence of a magnetic field within a specific range. They are commonly employed as end-of-travel or limit switches in gear motors. Hall effect limit switches provide feedback to the control system, indicating when the motor has reached a specific position or when it has moved beyond the allowed range.

6. Resolver Feedback:

A resolver is an electromagnetic device used to determine the position and speed of a rotating shaft. It provides feedback by generating sine and cosine signals that correspond to the shaft’s angular position. Resolver feedback is commonly used in high-performance gear motors requiring accurate position and speed control.

These feedback mechanisms, when integrated into gear motors, enable precise control, monitoring, and adjustment of various motor parameters. By utilizing feedback signals from encoders, Hall effect sensors, current sensors, temperature sensors, limit switches, or resolvers, the control system can optimize the motor’s performance, ensure accurate positioning, maintain speed control, and protect the motor from excessive loads or overheating.

gear motor

Can gear motors be used for precise positioning, and if so, what features enable this?

Yes, gear motors can be used for precise positioning in various applications. The combination of gear mechanisms and motor control features enables gear motors to achieve accurate and repeatable positioning. Here’s a detailed explanation of the features that enable gear motors to be used for precise positioning:

1. Gear Reduction:

One of the key features of gear motors is their ability to provide gear reduction. Gear reduction refers to the process of reducing the output speed of the motor while increasing the torque. By using the appropriate gear ratio, gear motors can achieve finer control over the rotational movement, allowing for more precise positioning. The gear reduction mechanism enables the motor to rotate at a slower speed while maintaining higher torque, resulting in improved accuracy and control.

2. High Resolution Encoders:

Many gear motors are equipped with high-resolution encoders. An encoder is a device that measures the position and speed of the motor shaft. High-resolution encoders provide precise feedback on the motor’s rotational position, allowing for accurate position control. The encoder signals are used in conjunction with motor control algorithms to ensure precise positioning by monitoring and adjusting the motor’s movement in real-time. The use of high-resolution encoders greatly enhances the gear motor’s ability to achieve precise and repeatable positioning.

3. Closed-Loop Control:

Gear motors with closed-loop control systems offer enhanced positioning capabilities. Closed-loop control involves continuously comparing the actual motor position (as measured by the encoder) with the desired position and making adjustments to minimize any position error. The closed-loop control system uses feedback from the encoder to adjust the motor’s speed, direction, and torque, ensuring accurate positioning even in the presence of external disturbances or variations in the load. Closed-loop control enables gear motors to actively correct for position errors and maintain precise positioning over time.

4. Stepper Motors:

Stepper motors are a type of gear motor that provides excellent precision and control for positioning applications. Stepper motors operate by converting electrical pulses into incremental steps of movement. Each step corresponds to a specific angular displacement, allowing precise positioning control. Stepper motors offer high step resolution, allowing for fine position adjustments. They are commonly used in applications that require precise positioning, such as robotics, 3D printers, and CNC machines.

5. Servo Motors:

Servo motors are another type of gear motor that excels in precise positioning tasks. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer high torque, high speed, and excellent positional accuracy. Servo motors are capable of dynamically adjusting their speed and torque to maintain the desired position accurately. They are widely used in applications that require precise and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems.

6. Motion Control Algorithms:

Advanced motion control algorithms play a crucial role in enabling gear motors to achieve precise positioning. These algorithms, implemented in motor control systems or dedicated motion controllers, optimize the motor’s behavior to ensure accurate positioning. They take into account factors such as acceleration, deceleration, velocity profiling, and jerk control to achieve smooth and precise movements. Motion control algorithms enhance the gear motor’s ability to start, stop, and position accurately, reducing position errors and overshoot.

By leveraging gear reduction, high-resolution encoders, closed-loop control, stepper motors, servo motors, and motion control algorithms, gear motors can be effectively used for precise positioning in various applications. These features enable gear motors to achieve accurate and repeatable positioning, making them suitable for tasks that require precise control and reliable positioning performance.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China wholesaler Foot Mounted Output Hollow Shaft Helical-Bevel Gear Motor   with Best Sales China wholesaler Foot Mounted Output Hollow Shaft Helical-Bevel Gear Motor   with Best Sales
editor by CX 2024-02-27

China Standard 42mm NEMA 17 0.9/1.8 Degree Electric Geared Step Stepper Motor with Hollow Shaft supplier

Product Description

Description:

Step angel:1.8°
Motor size: NEMA17 42mm
Holding torque:0.2N.m-0.8N.m
Options:Brake,Encoder,Plantary gear box

CE and RoHS approved

Applications
Use for robots stepper motor, electric automatic equipment stepping motor, medical instrument stepping motor, advertisement instrument stepper motor, lighting& audio equipment stepper motor, printer stepper motor, textile machinery stepper motor,CNC router stepper motor,3D Printer stepper motor.

Motor Specifications

nema17, 1.8 degree
Model Number Holding torque  Rated Cuttent Wiring Resisitance Winding Inductance Rotor Inertia Mass Motor Length Connection Mode
Single Shaft N.m min A/Phase Ω/Phase @20ºC Mh/Phase g.cm² kg mm  
JT242BP06 0.16 0.6  6.6 9.5 23 0.2 31 Connector
JT242BP12 1.2 1.8 2.4
JT243BP06 0.25 0.6  8 16.5 35 0.24 35
JT243BP12 1.2 2.1 4.2
JT244BP12 0.4 1.2 2.5 5.5 54 0.3 41
JT244BP20 2 1.05 2.1
JT245BP12 0.48 1.2 3.1 8 77 0.36 49
JT245BP20 2 1.35 3.2
JT246BP12 0.72 1.2 4 11 110 0.5 61
JT246BP20 2 1.75 4
JT243UP12 0.17 1.2 2.4 2.2 35 0.24 35
JT244UP12 0.28 1.2 3 3 54 0.3 41
JT245UP12 0.33 1.2 3.7 4.6 77 0.36 49

 

nema17, 0.9 degree
Model Number Holding torque  Rated Cuttent Wiring Resisitance Winding Inductance Rotor Inertia Mass Motor Length Connection Mode
Single Shaft N.m min A/Phase Ω/Phase @20ºC Mh/Phase g.cm² kg mm  
JT443BP12 0.25 1.2 2 5 35 0.24 35 Connector
JT444BP20 0.4 2 1.1 3 54 0.3 41
JT445BP20 0.5 2 1.4 4 77 0.36 49

 

nema17, 1.8 degree, Brake
Model Number Holding torque  Rated Cuttent Wiring Resisitance Winding Inductance Rotor Inertia Brake static friction torque Volt/Watt Motor Weight
Single Shaft N.m min A/Phase Ω/Phase @20ºC Mh/Phase g.cm² N.m v/w kg
JT244B20M 0.4 2 1.05 2.1 54 0.5 24VDC/3.5W 0.3
JT245B20M 0.48 2 1.35 3.2 77 0.36
JT246B20M 0.72 2 1.75 4 110 0.5

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Printing Equipment
Speed: Variable Speed
Number of Stator: Two-Phase
Excitation Mode: HB-Hybrid
Function: Driving
Number of Poles: 2
Samples:
US$ 10/Piece
1 Piece(Min.Order)

|

Customization:
Available

|

gear motor

Can gear motors be used in robotics, and if so, what are some notable applications?

Yes, gear motors are widely used in robotics due to their ability to provide torque, precise control, and compact size. They play a crucial role in various robotic applications, enabling the movement, manipulation, and control of robotic systems. Here are some notable applications of gear motors in robotics:

1. Robotic Arm Manipulation:

Gear motors are commonly used in robotic arms to provide precise and controlled movement. They enable the articulation of the arm’s joints, allowing the robot to reach different positions and orientations. Gear motors with high torque capabilities are essential for lifting, rotating, and manipulating objects with varying weights and sizes.

2. Mobile Robots:

Gear motors are employed in mobile robots, including wheeled robots and legged robots, to drive their locomotion. They provide the necessary torque and control for the robot to move, turn, and navigate in different environments. Gear motors with appropriate gear ratios ensure the robot’s mobility, stability, and maneuverability.

3. Robotic Grippers and End Effectors:

Gear motors are used in robotic grippers and end effectors to control the opening, closing, and gripping force. By integrating gear motors into the gripper mechanism, robots can grasp and manipulate objects of various shapes, sizes, and weights. The gear motors enable precise control over the gripping action, allowing the robot to handle delicate or fragile objects with care.

4. Autonomous Drones and UAVs:

Gear motors are utilized in the propulsion systems of autonomous drones and unmanned aerial vehicles (UAVs). They drive the propellers or rotors, providing the necessary thrust and control for the drone’s flight. Gear motors with high power-to-weight ratios, efficient energy conversion, and precise speed control are crucial for achieving stable and maneuverable flight in drones.

5. Humanoid Robots:

Gear motors are integral to the movement and functionality of humanoid robots. They are used in robotic joints, such as hips, knees, and shoulders, to enable human-like movements. Gear motors with appropriate torque and speed capabilities allow humanoid robots to walk, run, climb stairs, and perform complex motions resembling human actions.

6. Robotic Exoskeletons:

Gear motors play a vital role in robotic exoskeletons, which are wearable robotic devices designed to augment human strength and assist in physical tasks. Gear motors are used in the exoskeleton’s joints and actuators, providing the necessary torque and control to enhance human abilities. They enable users to perform tasks with reduced effort, assist in rehabilitation, or provide support in physically demanding environments.

These are just a few notable applications of gear motors in robotics. Their versatility, torque capabilities, precise control, and compact size make them indispensable components in various robotic systems. Gear motors enable robots to perform complex tasks, move with agility, interact with the environment, and assist humans in a wide range of applications, from industrial automation to healthcare and exploration.

gear motor

How do gear motors compare to other types of motors in terms of power and efficiency?

Gear motors can be compared to other types of motors in terms of power output and efficiency. The choice of motor type depends on the specific application requirements, including the desired power level, efficiency, speed range, torque characteristics, and control capabilities. Here’s a detailed explanation of how gear motors compare to other types of motors in terms of power and efficiency:

1. Gear Motors:

Gear motors combine a motor with a gear mechanism to deliver increased torque output and improved control. The gear reduction enables gear motors to provide higher torque while reducing the output speed. This makes gear motors suitable for applications that require high torque, precise positioning, and controlled movements. However, the gear reduction process introduces mechanical losses, which can slightly reduce the overall efficiency of the system compared to direct-drive motors. The efficiency of gear motors can vary depending on factors such as gear quality, lubrication, and maintenance.

2. Direct-Drive Motors:

Direct-drive motors, also known as gearless or integrated motors, do not use a gear mechanism. They provide a direct connection between the motor and the load, eliminating the need for gear reduction. Direct-drive motors offer advantages such as high efficiency, low maintenance, and compact design. Since there are no gears involved, direct-drive motors experience fewer mechanical losses and can achieve higher overall efficiency compared to gear motors. However, direct-drive motors may have limitations in terms of torque output and speed range, and they may require more complex control systems to achieve precise positioning.

3. Stepper Motors:

Stepper motors are a type of gear motor that excels in precise positioning applications. They operate by converting electrical pulses into incremental steps of movement. Stepper motors offer excellent positional accuracy and control. They are capable of precise positioning and can hold a position without power. Stepper motors have relatively high torque at low speeds, making them suitable for applications that require precise control and positioning, such as robotics, 3D printers, and CNC machines. However, stepper motors may have lower overall efficiency compared to direct-drive motors due to the additional power required to overcome the detents between steps.

4. Servo Motors:

Servo motors are another type of gear motor known for their high torque, high speed, and excellent positional accuracy. Servo motors combine a motor, a feedback device (such as an encoder), and a closed-loop control system. They offer precise control over position, speed, and torque. Servo motors are widely used in applications that require accurate and responsive positioning, such as industrial automation, robotics, and camera pan-tilt systems. Servo motors can achieve high efficiency when properly optimized and controlled but may have slightly lower efficiency compared to direct-drive motors due to the additional complexity of the control system.

5. Efficiency Considerations:

When comparing power and efficiency among different motor types, it’s important to consider the specific requirements and operating conditions of the application. Factors such as load characteristics, speed range, duty cycle, and control requirements influence the overall efficiency of the motor system. While direct-drive motors generally offer higher efficiency due to the absence of mechanical losses from gears, gear motors can deliver higher torque output and enhanced control capabilities. The efficiency of gear motors can be optimized through proper gear selection, lubrication, and maintenance practices.

In summary, gear motors offer increased torque and improved control compared to direct-drive motors. However, gear reduction introduces mechanical losses that can slightly impact the overall efficiency of the system. Direct-drive motors, on the other hand, provide high efficiency and compact design but may have limitations in terms of torque and speed range. Stepper motors and servo motors, both types of gear motors, excel in precise positioning applications but may have slightly lower efficiency compared to direct-drive motors. The selection of the most suitable motor type depends on the specific requirements of the application, balancing power, efficiency, speed range, and control capabilities.

gear motor

Can you explain the advantages of using gear motors in various mechanical systems?

Gear motors offer several advantages when utilized in various mechanical systems. Their unique characteristics make them well-suited for applications that require controlled power transmission, precise speed control, and torque amplification. Here’s a detailed explanation of the advantages of using gear motors:

1. Torque Amplification:

One of the key advantages of gear motors is their ability to amplify torque. By using different gear ratios, gear motors can increase or decrease the output torque from the motor. This torque amplification is crucial in applications that require high torque output, such as lifting heavy loads or operating machinery with high resistance. Gear motors allow for efficient power transmission, enabling the system to handle demanding tasks effectively.

2. Speed Control:

Gear motors provide precise speed control, allowing for accurate and controlled movement in mechanical systems. By selecting the appropriate gear ratio, the rotational speed of the output shaft can be adjusted to match the requirements of the application. This speed control capability ensures that the mechanical system operates at the desired speed, whether it needs to be fast or slow. Gear motors are commonly used in applications such as conveyors, robotics, and automated machinery, where precise speed control is essential.

3. Directional Control:

Another advantage of gear motors is their ability to control the rotational direction of the output shaft. By using different types of gears, such as spur gears, bevel gears, or worm gears, the direction of rotation can be easily changed. This directional control is beneficial in applications that require bidirectional movement, such as in actuators, robotic arms, and conveyors. Gear motors offer reliable and efficient directional control, contributing to the versatility and functionality of mechanical systems.

4. Efficiency and Power Transmission:

Gear motors are known for their high efficiency in power transmission. The gear system helps distribute the load across multiple gears, reducing the strain on individual components and minimizing power losses. This efficient power transmission ensures that the mechanical system operates with optimal energy utilization and minimizes wasted power. Gear motors are designed to provide reliable and consistent power transmission, resulting in improved overall system efficiency.

5. Compact and Space-Saving Design:

Gear motors are compact in size and offer a space-saving solution for mechanical systems. By integrating the motor and gear system into a single unit, gear motors eliminate the need for additional components and reduce the overall footprint of the system. This compact design is especially beneficial in applications with limited space constraints, allowing for more efficient use of available space while still delivering the necessary power and functionality.

6. Durability and Reliability:

Gear motors are designed to be robust and durable, capable of withstanding demanding operating conditions. The gear system helps distribute the load, reducing the stress on individual gears and increasing overall durability. Additionally, gear motors are often constructed with high-quality materials and undergo rigorous testing to ensure reliability and longevity. This makes gear motors well-suited for continuous operation in industrial and commercial applications, where reliability is crucial.

By leveraging the advantages of torque amplification, speed control, directional control, efficiency, compact design, durability, and reliability, gear motors provide a reliable and efficient solution for various mechanical systems. They are widely used in industries such as robotics, automation, manufacturing, automotive, and many others, where precise and controlled mechanical power transmission is essential.

China Standard 42mm NEMA 17 0.9/1.8 Degree Electric Geared Step Stepper Motor with Hollow Shaft   supplier China Standard 42mm NEMA 17 0.9/1.8 Degree Electric Geared Step Stepper Motor with Hollow Shaft   supplier
editor by CX 2024-01-16

China NEMA 17 Harmonic Drive, Hollow Shaft Gearbox car gearbox

Product Description

Solution Description:

one. Flexspline is a hollow flanging standard cylinder construction.

2. The composition of the entire item is compact. The enter shaft is directly matched with the interior gap of the wave generator. They are linked by a flat key slot.

three. The connecting way is circular spline set and versatile output, Or it can also be used that flexible mounted and round spline output.

Positive aspects:

one. Higher precision, higher torque

two. Devoted technological personnel can be on-the-go to provide design options

three. Manufacturing unit direct sales fine workmanship tough good quality assurance

four. Product top quality issues have a 1-12 months warranty time, can be returned for substitution or repair

Organization profile:

 

HangZhou CZPT Technologies Co., Ltd. established in 2014, is committed to the R & D plant of higher-precision transmission factors. At existing, the yearly production capacity can achieve 45000 sets of harmonic reducers. We firmly think in good quality very first. All links from raw resources to completed items are strictly supervised and managed, which supplies a solid basis for merchandise top quality. Our goods are offered all in excess of the nation and abroad.

The harmonic reducer and other higher-precision transmission parts had been independently produced by the organization. Our business spends twenty% of its revenue each and every 12 months on the study and development of new systems in the market. There are 5 people in R & D.

Our gain is as beneath:

1.7 many years of marketing encounter

2. 5-man or woman R & D crew to provide you with specialized support

3. It is bought at residence and overseas and exported to Turkey and Ireland

four. The merchandise high quality is certain with a a single-12 months warranty

5. Goods can be tailored

Energy manufacturing facility:

Our plant has an entire campus The amount of workshops is about 300 Regardless of whether it truly is from the generation of uncooked supplies and the procurement of uncooked components to the inspection of concluded merchandise, we are performing it ourselves. There is a complete manufacturing program

HCS-I Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CZPT torque at start off cease The allowable optimum of the regular load torque Maximum torque is allowed in an instantaneous Enable the optimum speed to be entered Typical enter velocity is permitted Back hole layout daily life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 eighty three.eight .4 eight.five .9 six.eight .seven 19.1 1.nine 8000 3000 ≤30 10000
one hundred 4.1 .4 8.9 .9 seven.2 .7 twenty 2
14 50 six.2 .6 twenty.seven 2.one seven.nine .7 40.three 4.one 7000 3000 ≤30 15000
80 nine .nine 27 2.7 12.7 1.3 54.one five.five
a hundred nine .9 32 3.three twelve.seven 1.3 sixty two.one 6.3
17 fifty 18.4 1.nine 39 4 29.9 three eighty.5 8.2 6500 3000 ≤30 15000
eighty twenty five.3 two.six forty nine.five 5 31 three.two 100.one ten.2
one hundred 27.six two.eight 62 six.3 forty five 4.six 124.two twelve.seven
20 50 28.8 two.9 sixty four.4 six.six 39 4 112.7 eleven.five 5600 3000 ≤30 15000
eighty 39.one 4 eighty five eight.eight 54 five.5 146.1 fourteen.nine
a hundred 46 four.7 94.three nine.6 56 five.8 169.one seventeen.2
a hundred and twenty forty six 4.seven 100 10.two 56 5.eight 169.one 17.2
160 46 4.seven 112 ten.9 56 5.8 169.1 seventeen.two
25 50 forty four.nine four.6 113 eleven.five 63 6.5 213.nine 21.8 4800 3000 ≤30 15000
eighty 72.five 7.4 158 sixteen.1 100 10.2 293.three 29.nine
one hundred 77.1 7.9 181 18.4 124 twelve.seven 326.6 33.three
one hundred twenty seventy seven.1 seven.9 192 19.six 124 12.7 349.six 35.six
32 50 87.four eight.9 248 25.3 124 twelve.7 439 44.eight 4000 3000 ≤30 15000
eighty 135.7 thirteen.eight 350 35.6 192 19.six 653 66.six
a hundred 157.6 16.1 383 39.1 248 twenty five.3 744 75.nine
one hundred twenty 157.six 16.1 406 forty one.four 248 25.three 789 80.five

HCG Parameter:

Model Speed ratio Enter the rated torque at 2000r/min Allowed CZPT torque at commence cease The allowable optimum of the typical load torque Maximum torque is allowed in an quick Let the maximum velocity to be entered Average enter pace is authorized Back gap design daily life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 eighty three.eight .four eight.five .9 6.eight .seven 19.1 one.nine 8000 3000 ≤20 10000
a hundred 4.one .4 eight.9 .9 7.two .7 twenty two
14 fifty seven .seven 23 2.three nine .9 46 4.seven 10000 6500 ≤20 15000
80 10 one thirty three.1 fourteen 1.four 61 6.2
a hundred ten one 36 3.seven 14 one.4 70 7.two
17 50 21 two.one forty four 4.five 34 3.four ninety one nine 7500 5600 ≤20 20000
80 29 two.9 fifty six 5.seven 35 three.six 113 twelve
one hundred 31 three.two 70 seven.two 51 five.two 143 fifteen
20 50 33 3.three seventy three 7.four forty four 4.5 127 13 7000 4800 ≤20 2000
80 44 4.5 ninety six 9.eight sixty one 6.2 one hundred sixty five 17
a hundred 52 five.three 107 10.9 64 6.five 191 20
a hundred and twenty fifty two five.3 113 eleven.five 64 6.5 191 twenty
a hundred and sixty 52 five.3 120 twelve.two sixty four 6.5 191 20
25 fifty 51 five.two 127 thirteen seventy two seven.3 242 twenty five 5600 4000 ≤20 2000
80 eighty two eight.four 178 18 113 twelve 332 34
100 87 eight.9 204 21 one hundred forty 14 369 38
120 87 8.9 217 22 a hundred and forty fourteen 395 40
32 fifty 99 10 281 29 one hundred forty fourteen 497 51 5600 3000 ≤20 2000
eighty 153 16 395 forty 217 22 738 seventy five
100 178 18 433 forty four 281 29 841 86
one hundred twenty 178 eighteen 459 47 281 29 892 ninety one

Exhibitions:
Software situation:

FQA:
Q: What should I give when I pick a gearbox/pace reducer?
A: The very best way is to give the motor drawing with parameters. Our engineer will examine and recommend the most ideal gearbox product for your reference.
Or you can also offer the underneath specification as well:
one) Type, product, and torque.
2) Ratio or output velocity
3) Functioning condition and connection method
four) Quality and mounted machine name
5) Enter mode and enter velocity
six) Motor brand name design or flange and motor shaft dimensions

US $317.5
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Car
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Customization:

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤30 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 15000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 112 10.9 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
120 157.6 16.1 406 41.4 248 25.3 789 80.5

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤20 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 7 0.7 23 2.3 9 0.9 46 4.7 10000 6500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 7500 5600 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 7000 4800 ≤20 2000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 5600 4000 ≤20 2000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 5600 3000 ≤20 2000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
120 178 18 459 47 281 29 892 91
US $317.5
/ Piece
|
1 Piece

(Min. Order)

###

Application: Motor, Electric Cars, Motorcycle, Machinery, Marine, Car
Hardness: Hardened Tooth Surface
Installation: 90 Degree
Layout: Coaxial
Gear Shape: Cylindrical Gear
Step: Single-Step

###

Customization:

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤30 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 6.2 0.6 20.7 2.1 7.9 0.7 40.3 4.1 7000 3000 ≤30 15000
80 9 0.9 27 2.7 12.7 1.3 54.1 5.5
100 9 0.9 32 3.3 12.7 1.3 62.1 6.3
17 50 18.4 1.9 39 4 29.9 3 80.5 8.2 6500 3000 ≤30 15000
80 25.3 2.6 49.5 5 31 3.2 100.1 10.2
100 27.6 2.8 62 6.3 45 4.6 124.2 12.7
20 50 28.8 2.9 64.4 6.6 39 4 112.7 11.5 5600 3000 ≤30 15000
80 39.1 4 85 8.8 54 5.5 146.1 14.9
100 46 4.7 94.3 9.6 56 5.8 169.1 17.2
120 46 4.7 100 10.2 56 5.8 169.1 17.2
160 46 4.7 112 10.9 56 5.8 169.1 17.2
25 50 44.9 4.6 113 11.5 63 6.5 213.9 21.8 4800 3000 ≤30 15000
80 72.5 7.4 158 16.1 100 10.2 293.3 29.9
100 77.1 7.9 181 18.4 124 12.7 326.6 33.3
120 77.1 7.9 192 19.6 124 12.7 349.6 35.6
32 50 87.4 8.9 248 25.3 124 12.7 439 44.8 4000 3000 ≤30 15000
80 135.7 13.8 350 35.6 192 19.6 653 66.6
100 157.6 16.1 383 39.1 248 25.3 744 75.9
120 157.6 16.1 406 41.4 248 25.3 789 80.5

###

Model Speed ratio Enter the rated torque at 2000r/min Allowed peak torque at start stop The allowable maximum of the average load torque Maximum torque is allowed in an instant Allow the maximum speed to be entered Average input speed is allowed Back gap design life
NM kgfm NM kgfm NM kgfm NM kgfm r / min r / min Arc sec Hour
11 80 3.8 0.4 8.5 0.9 6.8 0.7 19.1 1.9 8000 3000 ≤20 10000
100 4.1 0.4 8.9 0.9 7.2 0.7 20 2
14 50 7 0.7 23 2.3 9 0.9 46 4.7 10000 6500 ≤20 15000
80 10 1 30 3.1 14 1.4 61 6.2
100 10 1 36 3.7 14 1.4 70 7.2
17 50 21 2.1 44 4.5 34 3.4 91 9 7500 5600 ≤20 20000
80 29 2.9 56 5.7 35 3.6 113 12
100 31 3.2 70 7.2 51 5.2 143 15
20 50 33 3.3 73 7.4 44 4.5 127 13 7000 4800 ≤20 2000
80 44 4.5 96 9.8 61 6.2 165 17
100 52 5.3 107 10.9 64 6.5 191 20
120 52 5.3 113 11.5 64 6.5 191 20
160 52 5.3 120 12.2 64 6.5 191 20
25 50 51 5.2 127 13 72 7.3 242 25 5600 4000 ≤20 2000
80 82 8.4 178 18 113 12 332 34
100 87 8.9 204 21 140 14 369 38
120 87 8.9 217 22 140 14 395 40
32 50 99 10 281 29 140 14 497 51 5600 3000 ≤20 2000
80 153 16 395 40 217 22 738 75
100 178 18 433 44 281 29 841 86
120 178 18 459 47 281 29 892 91

Types of Vehicle Gearboxes

In a vehicle, there are many types of gearboxes available. There are planetary gearboxes, Coaxial helical gearboxes, and skew bevel helical gearboxes, among others. In this article, we’ll cover all of them and help you determine which type of gearbox would be right for your vehicle. Also, we’ll discuss how each differs from the others.
gearbox

planetary gearbox

A planetary gearbox is composed of three main components: a sun gear, an input bevel gear, and an output shaft. A planetary gearbox can have different output torques and ratios. The basic model of a planetary gearbox is highly efficient and transmits 97% of the power input. There are several kinds of planetary gearboxes, depending on the type of operation. In general, there are three types: the simple, the intermediate, and the complex.
The price of a planetary gearbox can vary a lot, and it’s important to know what you’ll need. Different manufacturers produce different planetary gearboxes, so check with a manufacturer to see what they have available. Make sure to check the quality of the planetary gearbox before making a final purchase. In addition, be sure to compare the prices and the availability of a particular product. A quality planetary gearbox will provide years of trouble-free operation and will not break your bank.
Planetary gears feature an integer number of teeth. Each planet has teeth that must mesh with its ring or sun. The number of planets, ring, and tooth count of each gear determine whether the teeth mesh. Some planets have fewer teeth than others, so they mesh better than others. However, compound planets can be more flexible and achieve higher reduction ratios. If you’re looking for a planetary gearbox for your next project, consider getting in touch with a manufacturer who specializes in this technology.
When it comes to construction, a planetary gearbox is no exception. It’s extremely important to choose the right planetary gear for your application, because an imbalance in the planet gear can cause increased wear and failure. Moreover, the compact size of a planetary gear ensures maximum heat dissipation. However, a planetary gear box may require cooling in some applications. A planetary gearbox will make your life easier, and it will give you years of trouble-free operation.

Straight bevel helical gearbox

The Straight bevel helical gearbox has a number of advantages, but it has a relatively short manufacturing process. Its most popular application is in the automotive industry, where it is used in many types of vehicles. Other applications include heavy and light equipment and the aviation and marine industries. Below is a brief introduction to this gearbox type. Read on to learn about its benefits. This type of gearbox is one of the easiest to manufacture.
The spiral bevel gear has larger teeth than straight bevel gears, resulting in a smoother, quieter rotation. It can handle high-speed heavy loads with less vibration. Spiral bevel gears are classified by their tooth form and cutting method. Straight bevel gears are easier to design and manufacture, but spiral bevel gears are more expensive. Both designs are suitable for high-speed, heavy-load operations, and general manufacturing applications.
In addition to being easy to install, the modular bevel gears have many advantages. They have an exceptionally high degree of interchangeability and feature the highest standards of component integrity. They can also be tailored to meet your specific requirements. The advantages of this gearbox type include high precision, optimum performance, and low noise. And because they are modular, they can be produced in a variety of finishes. These include stainless steel, titanium, and bronze.
Straight bevel helical gearbox manufacturers are committed to a high degree of precision in their designs. The radii, torques, and tooth profiles of straight bevel gears are more precisely measured than those of cylindrical bevel gears. The same calculations are used for all traditional bevel gear generators. This ensures that your 5-axis milled bevel gear sets have the same calculations and layout.
gearbox

Coaxial helical gearbox

The Coaxial helical gearbox is a highly efficient transmission system that is well suited for light-duty applications. Compared to spur-type gearboxes, the real pitch of a Coaxial helical gearbox is low at all helix angles. This is because the coaxial type has the same number of teeth and center gap as the spur gearbox. Coaxial helical gearboxes also have a smaller footprint and are compact.
Several nations have implemented lockdown regulations for Industrial Gearbox trade, threatening the global economy. Several factors have been implicated in COVID-19, including supply chain, market, and financial markets. Experts are monitoring the situation globally and project remunerative prospects for gearbox manufacturers after the crisis. This report depicts the latest scenario and offers a comprehensive analysis of COVID-19’s impact on the entire industry.
This Coaxial helical gearbox features a compact structure and high precision gear. Its three-stage design combines two-stage gears with a single-stage gear, forging high-quality alloy steel for high precision and durability. The gears are serially-designed for easy interchangeability. They are also available in high-frequency heat-treated steel. A Coaxial helical gearbox is the perfect solution for many applications.
Coaxial helical gearboxes have the added benefit of using cylindrical gears instead of shafts. They operate quietly, and have more surface area to interact with. Their fixed angles make them suitable for heavy-duty applications, like in conveyors, coolers, and grinders. Compared to other gearbox types, Helical gearboxes have higher power-carrying capacity. Listed below are the benefits of a Coaxial Helical Gearbox

Skew bevel helical gearbox

A Skew bevel helical gear box is a common type of industrial gearbox. These gearboxes are rigid and compact and can be used in a variety of applications. They are commonly used in heavy-duty applications such as grinding mills, conveyors, and coolers. They are used in many applications to provide rotary motions between non-parallel shafts. They also have the added benefit of high-efficiency in a variety of industries.
Skew bevel helical gear boxes are suitable for heavy loads and are monolithic in construction. This type of gearbox combines the benefits of bevel and helical gears for right-angle torque, which makes it a popular choice for heavy-duty applications. In addition to being a robust and reliable gearbox, these gearboxes are highly customizable and can meet almost any industrial need.
To maximize the efficiency of bevel gears, FE-based tooth contact analysis is used to develop a sophisticated geometry optimization algorithm. The software also allows users to define optimal flank topography by introducing application-specific weightings for specific load levels. With this data, a manufacturing simulation is conducted to determine the best variant. A robust variant combines the benefits of efficiency, load-carrying capacity, and low excitation behavior.
The helical gear can be angled at 90 degrees. This is similar to a spur gear but produces less noise. It can achieve a nine-to-one speed reduction with one stage. However, a helical gear requires a larger driver gear for higher reductions. This gearbox is suitable for speeds from 1:1 to three times. They are often used in the manufacture of motors and generators.
gearbox

Extruder helical gearbox

An extruder helical gearbox is one of the most common industrial gears. It is compact in size and low-power consuming, making it ideal for heavy-duty applications. Extruder helical gearboxes are suitable for a variety of industrial applications, including cement, plastics, rubber, conveyors, and coolers. In addition to its use in plastics and rubber manufacturing, this gearbox is also useful in other low-power applications such as crushers, coolers, and conveyors.
CZPT SG series Extruder Helical Gearboxes are available in Single Screw and Twin Screw Variations. These gears feature a compact design, high power density, and long service life. Axial bearing housing and thrust bearings are mounted on the input shafts. Extruder helical gearboxes can be installed in various positions, including horizontal, vertical, and inclined.
Helicoidal gears are often produced in a modular manner. This design provides multiple benefits, including engineering and performance advantages, modular production, and the highest level of component integrity. A single helical gearbox can be assembled into a larger gearbox if needed, but modular production ensures consistent performance and economy. This modular design is also cost-effective. It is a versatile and reliable solution for a wide range of applications.
In addition to its efficiencies, Extruder helical gearboxes also have a low noise profile. They have no squeal sounds, and they are silent when running. They can transfer more power than conventional gearboxes. This type of gear has been used in the manufacturing of high-quality plastic products for years. They are often used for applications in automotive transmissions. Aside from being quiet, helical gears have higher contact levels and lower vibration.

China NEMA 17 Harmonic Drive, Hollow Shaft Gearbox     car gearbox	China NEMA 17 Harmonic Drive, Hollow Shaft Gearbox     car gearbox
editor by czh 2023-01-29

China S Series Hollow Shaft Helical Worm Gear Box With IEC Motor with Best Sales

Item Description

S series Helical- Worm Geared Reducer with Motor

one. Solution characteristics

one.1. S series: correct-angle velocity reduction gearing composed by helical gears, worms, and gears, optimized and made in accordance to global common
 
1.2.Substantial precision, high efficiency, wonderful classification in transmission ratio, wide selection, huge transmission torque, reputable functionality, minimal noise, adaptable installation, and hassle-free use and maintenance.
 
one.3. They are commonly utilised in numerous lower-velocity transmissions, which are general standard parts of mechanical transmission. 

two. Complex parameters

Housing material                                     Forged iron
Housing hardness HBS90-240
Equipment content: 20CrMnTi
Floor hardnesss  of gear     HRC58°-62°
Gear main hardness HRC33°-40°
Enter/Output shaft material           40CrMnTi
Input/Output shaft hardness HBS241°-286°
Shaft at oil seal postion hardness HRC48 ° -55 °
Machining precision of gears  material Accurate grinding 6-5 quality
Warmth remedy tempering, cementing, quenching and so forth
Effectiveness up to ninety%
Sound(Max) 60-68dB
Unit product Foot mounted,flange mounted,hollow shaft mounted
Enter method flange input,inline enter,shaft enter
Vibration ≤ 20um
Backlash ≤ 20Arcmin
Bearing brand names NSK,C&U and many others
Oil seal manufacturers NAK,SKF and so on
Lubricant VG680
Motor IP55, F class
Motor shaft 40Cr, Tempering, cementing,quenching and many others.

three.Purposes

HangZhou XG Transmission Gearbox reducer are broadly utilised in :
Ceramic Market
Glass Business
Foods Business
Metallurgy Market
Beer& Drink Industry
Printing and dyeing Market
Textile Industry
Warehouse Logoistics Sector
Wood functioning Machinery
environmental security tools Sector
Leather Sector
Pharmacy Business
 
five.Firm Info

 
ZheJiang CZPT Co.,Ltd,the predecessor was a state-owned armed forces CZPT enterprise, was recognized in 1965. CZPT specializes in the total energy transmission answer for higher-end tools manufacturing industries primarily based on the aim of “Platform Product, Software Style and Specialist Support”.

Starshine have a strong complex force with more than 350 staff at current, like in excess of 30 engineering professionals, 30 high quality inspectors, masking an area of 80000 sq. meters and varieties of advanced processing equipment and testing equipments. We have a good foundation for the market application growth and support of high-stop velocity reducers & variators proudly owning to the provincial engineering technologies investigation heart,the lab of equipment pace reducers, and the foundation of contemporary R&D.

Our primary items are R/S/K/F sequence helical geared motor, SNP series planetary gearboxes, SNKG series bevel-helical gearmotor, NCJ series equipment motor, RV series worm gearboxes, JWB-X series pace variators, B/JXJ series cycloidal gearboxes, XGK collection helical-hypoid Gearboxes, which commonly utilized in ceramic industry, glass market, woodworking machinery , high voltage change, foods & beverage, packaging & printing, Storage & logistics, hoisting & transportation facilities…etc , and CZPT technically give the professional item & service for the medium and high-conclude clients, and our gearboxes are best-offering in domestic, and even in overseas , such as in Europe, North America, South The us, Middle East, South Asia, Southeast Asia, Africa…etc.

 In the long term , Starshine will hold the creed of “serving buyer, diligence & simplicity, self-criticism, innovation, honesty, teamwork”, and the concept of “high quality results in value” to emphasis on the customers’ needs and give them the competitive transmission resolution and generate price for them continuously, and make a high-conclude gear producing business and develop a preferred manufacturer of replacing import items and upgrading continuously for the finish end users.

Amongst Dynamic and Static, Straightforward is Extraordinary, let us go forward hand in hand and make a brilliant future!

Our factory 
1. three hundred sets superior processing machines

two. “6S”Standardized Administration

Our Team 

Technological Crew

Sales Crew

After Income Staff

Exibition Present 

2019 ASIA ceramics exhibition

2018 Entire world of Industry Exhibition

Top quality Assurance
 
Goods one hundred% check ahead of delivery

Handed ISO 9001: 2015 Certificate.

 
Our Certificates:
Passed ” ISO 9001 Worldwide Good quality Technique Certification”, “Intercontinental Top quality Credit rating AAA++ Ceritifacte” ,  ” Swiss SGS Certificate”, Iconic Model in Chinese Electromechanical Sector”, “Famous Brand name of ZheJiang Province”, “Non-public Scientific and Technological Business in ZheJiang Province”, “Nationwide Substantial and New-tech Business”, “Leading 50 in Chinese Gear Business” “2011 HangZhou Engineering and Technological R&D Middle” and so on.

Our service

1. We offer 12 months Warranty.
two. We have thousands of gearbox reducers. From Enter Power .06KW to 200KW, Ratio 1.3-289.seventy four, Output velocity -1095rpm and Output torque 1.4-62800Nm. They can meet up with your all distinct specifications for various industries.
3. 24 several hours online services.
four. Quickly delivry. 
five. We provide E-catalog or Paper catalog,so you can decide on the design simply according to your requirements 
six. Welcome you appear to our manufacturing unit to check out our items, we can support you to guide the resort or ticket.

FAQ
 
Q:Are you a trading  company or producer?
A: We are manufacturer.

Q:Where do you foundation?
A: We are in Xihu (West Lake) Dis. district, HangZhou, China.

Q:What sorts of gearbox can you produce for us?
A: R/S/K/F sequence helical geared motor, SNP collection planetary gearboxes, SNKG series bevel-helical gearmotor, NCJ collection equipment motor, RV sequence worm gearboxes, JWB-X sequence speed variators, B/JXJ sequence cycloidal gearboxes, XGK series helical-hypoid Gearboxes

Q:What are the software of the gearbox?
A:Goods are extensively utilized in ceramic, glass, food, metallurgy, beer & drink, printing and dyeing, textile, petrochemical engineering, warehouse logistics, wooden-operating machine, environmental protection gear, printing and packaging, pharmacy, and leather-based. Items are sold in some countries and locations, this sort of as Europe, The usa, and Southeast Asia, and it possesses dozens of distributors and after-sale service agents.

Q:What is the substance you use?

A1: Aluminum Housing physique ( For the RV collection worm gearbox Dimensions thirty~90)
   
A2: Forged iron(For the RV series worm gearbox, Measurement a hundred and ten-a hundred and fifty, For the NCJ  & F/R/S/K sequence helical gear reducer)

Any inquiry pls speak to:
Nicola Huang (Export income)
 
 
Site: gearbox1965

US $102.56-579.77
/ Piece
|
2 Pieces

(Min. Order)

###

Application: Motor, Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Three-Step

###

Customization:

###

Housing material                                     Cast iron
Housing hardness HBS90-240
Gear material: 20CrMnTi
Surface hardnesss  of gear     HRC58°-62°
Gear core hardness HRC33°-40°
Input/Output shaft material           40CrMnTi
Input/Output shaft hardness HBS241°-286°
Shaft at oil seal postion hardness HRC48 ° -55 °
Machining precision of gears  material Accurate grinding 6-5 grade
Heat treatment tempering, cementing, quenching etc
Efficiency up to 90%
Noise(Max) 60-68dB
Unit model Foot mounted,flange mounted,hollow shaft mounted
Input method flange input,inline input,shaft input
Vibration ≤ 20um
Backlash ≤ 20Arcmin
Bearing brands NSK,C&U etc
Oil seal brands NAK,SKF etc
Lubricant VG680
Motor IP55, F class
Motor shaft 40Cr, Tempering, cementing,quenching etc.
US $102.56-579.77
/ Piece
|
2 Pieces

(Min. Order)

###

Application: Motor, Machinery, Agricultural Machinery
Function: Distribution Power, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Horizontal Type
Step: Three-Step

###

Customization:

###

Housing material                                     Cast iron
Housing hardness HBS90-240
Gear material: 20CrMnTi
Surface hardnesss  of gear     HRC58°-62°
Gear core hardness HRC33°-40°
Input/Output shaft material           40CrMnTi
Input/Output shaft hardness HBS241°-286°
Shaft at oil seal postion hardness HRC48 ° -55 °
Machining precision of gears  material Accurate grinding 6-5 grade
Heat treatment tempering, cementing, quenching etc
Efficiency up to 90%
Noise(Max) 60-68dB
Unit model Foot mounted,flange mounted,hollow shaft mounted
Input method flange input,inline input,shaft input
Vibration ≤ 20um
Backlash ≤ 20Arcmin
Bearing brands NSK,C&U etc
Oil seal brands NAK,SKF etc
Lubricant VG680
Motor IP55, F class
Motor shaft 40Cr, Tempering, cementing,quenching etc.

Choosing a Gearbox For Your Application

The gearbox is an essential part of bicycles. It is used for several purposes, including speed and force. A gearbox is used to achieve one or both of these goals, but there is always a trade-off. Increasing speed increases wheel speed and forces on the wheels. Similarly, increasing pedal force increases the force on the wheels. This makes it easier for cyclists to accelerate their bicycles. However, this compromise makes the gearbox less efficient than an ideal one.
gearbox

Dimensions

Gearboxes come in different sizes, so the size of your unit depends on the number of stages. Using a chart to determine how many stages are required will help you determine the dimensions of your unit. The ratios of individual stages are normally greater at the top and get smaller as you get closer to the last reduction. This information is important when choosing the right gearbox for your application. However, the dimensions of your gearbox do not have to be exact. Some manufacturers have guides that outline the required dimensions.
The service factor of a gearbox is a combination of the required reliability, the actual service condition, and the load that the gearbox will endure. It can range from 1.0 to 1.4. If the service factor of a gearbox is 1.0, it means that the unit has just enough capacity to meet your needs, but any extra requirements could cause the unit to fail or overheat. However, service factors of 1.4 are generally sufficient for most industrial applications, since they indicate that a gearbox can withstand 1.4 times its application requirement.
Different sizes also have different shapes. Some types are concentric, while others are parallel or at a right angle. The fourth type of gearbox is called shaft mount and is used when mounting the gearbox by foot is impossible. We will discuss the different mounting positions later. In the meantime, keep these dimensions in mind when choosing a gearbox for your application. If you have space constraints, a concentric gearbox is usually your best option.

Construction

The design and construction of a gearbox entails the integration of various components into a single structure. The components of a gearbox must have sufficient rigidity and adequate vibration damping properties. The design guidelines note the approximate values for the components and recommend the production method. Empirical formulas were used to determine the dimensions of the various components. It was found that these methods can simplify the design process. These methods are also used to calculate the angular and axial displacements of the components of the gearbox.
In this project, we used a 3D modeling software called SOLIDWORKS to create a 3-D model of a gear reducer. We used this software to simulate the structure of the gearbox, and it has powerful design automation tools. Although the gear reducer and housing are separate parts, we model them as a single body. To save time, we also removed the auxiliary elements, such as oil inlets and oil level indicators, from the 3D model.
Our method is based on parameter-optimized deep neural networks (DBNs). This model has both supervised and unsupervised learning capabilities, allowing it to be self-adaptive. This method is superior to traditional methods, which have poor self-adaptive feature extraction and shallow network generalization. Our algorithm is able to recognize faults in different states of the gearbox using its vibration signal. We have tested our model on two gearboxes.
With the help of advanced material science technologies, we can now manufacture the housing for the gearbox using high-quality steel and aluminium alloys. In addition, advanced telematics systems have increased the response time of manufacturers. These technologies are expected to create tremendous opportunities in the coming years and fuel the growth of the gearbox housing market. There are many different ways to construct a gearbox, and these techniques are highly customizable. In this study, we will consider the design and construction of various gearbox types, as well as their components.
gearbox

Working

A gearbox is a mechanical device that transmits power from one gear to another. The different types of gears are called planetary gears and are used in a variety of applications. Depending on the type of gearbox, it may be concentric, parallel, or at a right angle. The fourth type of gearbox is a shaft mount. The shaft mount type is used in applications that cannot be mounted by foot. The various mounting positions will be discussed later.
Many design guidelines recommend a service factor of 1.0, which needs to be adjusted based on actual service conditions. This factor is the combined measure of external load, required reliability, and overall gearbox life. In general, published service factors are the minimum requirements for a particular application, but a higher value is necessary for severe loading. This calculation is also recommended for high-speed gearboxes. However, the service factor should not be a sole determining factor in the selection process.
The second gear of a pair of gears has more teeth than the first gear. It also turns slower, but with greater torque. The second gear always turns in the opposite direction. The animation demonstrates this change in direction. A gearbox can also have more than one pair of gears, and a first gear may be used for the reverse. When a gear is shifted from one position to another, the second gear is engaged and the first gear is engaged again.
Another term used to describe a gearbox is “gear box.” This term is an interchangeable term for different mechanical units containing gears. Gearboxes are commonly used to alter speed and torque in various applications. Hence, understanding the gearbox and its parts is essential to maintaining your car’s performance. If you want to extend the life of your vehicle, be sure to check the gearbox’s efficiency. The better its functioning, the less likely it is to fail.

Advantages

Automatic transmission boxes are almost identical to mechanical transmission boxes, but they also have an electronic component that determines the comfort of the driver. Automatic transmission boxes use special blocks to manage shifts effectively and take into account information from other systems, as well as the driver’s input. This ensures accuracy and positioning. The following are a few gearbox advantages:
A gearbox creates a small amount of drag when pedaling, but this drag is offset by the increased effort to climb. The external derailleur system is more efficient when adjusted for friction, but it does not create as little drag in dry conditions. The internal gearbox allows engineers to tune the shifting system to minimize braking issues, pedal kickback, and chain growth. As a result, an internal gearbox is a great choice for bikes with high-performance components.
Helical gearboxes offer some advantages, including a low noise level and lower vibration. They are also highly durable and reliable. They can be extended in modular fashion, which makes them more expensive. Gearboxes are best for applications involving heavy loads. Alternatively, you can opt for a gearbox with multiple teeth. A helical gearbox is more durable and robust, but it is also more expensive. However, the benefits far outweigh the disadvantages.
A gearbox with a manual transmission is often more energy-efficient than one with an automatic transmission. Moreover, these cars typically have lower fuel consumption and higher emissions than their automatic counterparts. In addition, the driver does not have to worry about the brakes wearing out quickly. Another advantage of a manual transmission is its affordability. A manual transmission is often available at a lower cost than its automatic counterpart, and repairs and interventions are easier and less costly. And if you have a mechanical problem with the gearbox, you can control the fuel consumption of your vehicle with appropriate driving habits.
gearbox

Application

While choosing a gearbox for a specific application, the customer should consider the load on the output shaft. High impact loads will wear out gear teeth and shaft bearings, requiring higher service factors. Other factors to consider are the size and style of the output shaft and the environment. Detailed information on these factors will help the customer choose the best gearbox. Several sizing programs are available to determine the most appropriate gearbox for a specific application.
The sizing of a gearbox depends on its input speed, torque, and the motor shaft diameter. The input speed must not exceed the required gearbox’s rating, as high speeds can cause premature seal wear. A low-backlash gearbox may be sufficient for a particular application. Using an output mechanism of the correct size may help increase the input speed. However, this is not recommended for all applications. To choose the right gearbox, check the manufacturer’s warranty and contact customer service representatives.
Different gearboxes have different strengths and weaknesses. A standard gearbox should be durable and flexible, but it must also be able to transfer torque efficiently. There are various types of gears, including open gearing, helical gears, and spur gears. Some of the types of gears can be used to power large industrial machines. For example, the most popular type of gearbox is the planetary drive gearbox. These are used in material handling equipment, conveyor systems, power plants, plastics, and mining. Gearboxes can be used for high-speed applications, such as conveyors, crushers, and moving monorail systems.
Service factors determine the life of a gearbox. Often, manufacturers recommend a service factor of 1.0. However, the actual value may be higher or lower than that. It is often useful to consider the service factor when choosing a gearbox for a particular application. A service factor of 1.4 means that the gearbox can handle 1.4 times the load required. For example, a 1,000-inch-pound gearbox would need a 1,400-inch-pound gearbox. Service factors can be adjusted to suit different applications and conditions.

China S Series Hollow Shaft Helical Worm Gear Box With IEC Motor     with Best Sales China S Series Hollow Shaft Helical Worm Gear Box With IEC Motor     with Best Sales
editor by czh 2023-01-07

China Standard Constant Speed L Type Geared Hollow Shaft Gear Motor with ISO9001 4gnfs near me supplier

Solution Description

TaiBang Motor Market Team Co., Ltd.

The major products is induction motor, reversible motor, DC brush equipment motor, DC brushless equipment motor, CH/CV huge equipment motors, Planetary equipment motor ,Worm equipment motor etc, which utilized broadly in a variety of fields of producing pipelining, transportation, meals, medication, printing, cloth, packing, workplace, equipment, entertainment and many others, and is the favored and matched product for automatic equipment. 

Motor Design Instruction

4RK25GN-C 

Gear Head Model Instruction

4GN-100RC

Specification of motor 25W 80mm Fastened pace AC gear motor

Gear Head Torque Desk(Kg.cm)                                                                                                                                                                                         (kg.cm×9.8÷100)=N.m

Exterior Dimension

4I(R)K25/4A(GN)(   )

4I(R)K25/4GN(    )RC

4I(R)K25/4GN(    )RT
Over drawing is for standard screw gap.If need by means of hole, terminal box, or electronic magnet brake, require to notify the seller.
 

Connection Diagram:

FAQ

Q: How about your business?
A:We are gear motor manufacturing facility situated in HangZhou city of China,we start from 1995 ,we have far more than 1200 staff ,main products is AC CZPT equipment motor 6W to 250W, AC small gear motor 100W to 3700W,brush DC motor 10W to 400W,brushless motor 10W to 750W,drum motor 60W to 3700W ,Planetary gearbox ,worm gearbox and so forth .

Q: How to choose a appropriate motor?
A:If you have gear motor images or drawings to present us, or you inform us detailed specs like voltage, speed, torque, motor dimension, operating mode of the motor, necessary life time and noise stage etc, remember to do not hesitate to enable us know, then we can suggest ideal motor for each your request .

Q: Can you make the gear motor with customizedize specifications ?
Indeed, we can customise for each your ask for for the voltage, velocity, torque and shaft size and form. If you need further wires or cables soldered on the terminal or need to add connectors, or capacitors or EMC we can make it too.

Q: What is your lead time?
A: Usually our typical standard solution will want 10-15days, a little bit more time for tailored goods. But we are very adaptable on the guide time, it will rely on the distinct orders.
Q: What is your MOQ?
A: If delivery by sea ,the minimal purchase is a hundred parts, if deliver by express, there is no limit.
Q: Do you have the merchandise in inventory?
A: I am sorry we do not have the merchandise in stock, All goods are manufactured with orders.
Q: How to make contact with us ?
A: You can send out us enquiry . 

Advantages of a Planetary Motor

In addition to becoming 1 of the most effective kinds of a push, a Planetary Motor also offers a fantastic amount of other advantages. These features permit it to generate a large variety of gear reductions, as properly as make larger torques and torque density. Let’s take a closer search at the rewards this mechanism has to provide. To understand what can make it so desirable, we are going to investigate the diverse types of planetary programs.
Motor

Photo voltaic equipment

The solar equipment on a planetary motor has two distinct rewards. It produces much less sound and warmth than a helical gear. Its compact footprint also minimizes sound. It can function at high speeds with out sacrificing effectiveness. However, it should be preserved with continuous care to operate efficiently. Solar gears can be simply destroyed by water and other debris. Photo voltaic gears on planetary motors may require to be changed above time.
A planetary gearbox is composed of a sunlight equipment and two or far more planetary ring and spur gears. The sunshine equipment is the major gear and is pushed by the enter shaft. The other two gears mesh with the sun equipment and engage the stationary ring equipment. The 3 gears are held jointly by a provider, which sets the spacing. The output shaft then turns the planetary gears. This produces an output shaft that rotates.
Yet another advantage of planetary gears is that they can transfer increased torques although being compact. These rewards have led to the development of photo voltaic gears. They can lessen the sum of energy eaten and generate a lot more electrical power. They also supply a for a longer time support daily life. They are an superb option for photo voltaic-run automobiles. But they have to be set up by a accredited solar vitality organization. And there are other advantages as properly. When you put in a photo voltaic gear on a planetary motor, the power created by the solar will be transformed to beneficial energy.
A solar equipment on a planetary motor employs a photo voltaic equipment to transmit torque from the sunshine to the planet. This method performs on the theory that the solar equipment rotates at the identical fee as the earth gears. The sunlight equipment has a frequent layout modulus of -Ns/Np. That’s why, a 24-tooth sunshine gear equals a 3-1/2 earth equipment ratio. When you contemplate the efficiency of photo voltaic gears on planetary motors, you will be in a position to establish no matter whether the solar gears are more productive.

Sun gear

The mechanical arrangement of a planetary motor contains of two parts: a ring equipment and a solar equipment. The ring equipment is fixed to the motor’s output shaft, even though the sun equipment rolls all around and orbits all around it. The ring equipment and sunshine gear are connected by a planetary provider, and the torque they create is distributed throughout their enamel. The planetary structure arrangement also minimizes backlash, and is critical to obtain a rapid start and cease cycle.
When the two planetary gears rotate independently, the sunshine equipment will rotate counterclockwise and the ring-equipment will flip in the very same direction. The ring-equipment assembly is mounted in a carrier. The provider equipment and solar equipment are linked to every other by a shaft. The planetary gears and sunshine gear rotate around every single other on the ring-equipment carrier to lessen the speed of the output shaft. The planetary equipment technique can be multiplied or staged to acquire a larger reduction ratio.
A planetary equipment motor mimics the planetary rotation program. The enter shaft turns a central gear, recognized as the sunlight equipment, while the planetary gears rotate all around a stationary sunshine gear. The motor’s compact design and style enables it to be easily mounted to a motor vehicle, and its lower weight makes it best for modest cars. In addition to becoming extremely productive, a planetary equipment motor also offers several other positive aspects.
A planetary gearbox uses a solar equipment to give torque to the other gears. The planet pinions mesh with an inner tooth ring equipment to create rotation. The provider also functions as a hub among the input equipment and output shaft. The output shaft combines these two factors, giving a increased torque. There are 3 kinds of planetary gearboxes: the sunshine gear and a wheel travel planetary gearbox.
Motor

Planetary equipment

A planetary motor equipment works by distributing rotational pressure along a separating plate and a cylindrical shaft. A shock-absorbing unit is provided in between the separating plate and cylindrical shaft. This frustrated part helps prevent abrasion put on and foreign particles from coming into the system. The separating plate and shaft are positioned coaxially. In this arrangement, the input shaft and output shaft are rotated relative to one particular one more. The rotatable disc absorbs the impact.
An additional advantage of a planetary motor equipment is its efficiency. Planetary motor gears are extremely productive at transferring power, with ninety seven% of the enter strength currently being transferred to the output. They can also have high equipment ratios, and offer minimal sounds and backlash. This design and style also allows the planetary gearbox to perform with electrical motors. In addition, planetary gears also have a long support existence. The efficiency of planetary gears is due in portion to the large variety of enamel.
Other rewards of a planetary motor gear include the relieve of modifying ratios, as well as the decreased security inventory. Not like other gears, planetary gears will not demand particular tools for changing ratios. They are utilized in several industries, and share areas throughout a number of measurements. This indicates that they are value-powerful to produce and call for considerably less security inventory. They can withstand large shock and wear, and are also compact. If you happen to be looking for a planetary motor gear, you have arrive to the proper area.
The axial stop surface of a planetary equipment can be worn down by abrasion with a separating plate. In addition, international particles might enter the planetary equipment unit. These particles can harm the gears or even trigger sound. As a outcome, you need to verify planetary gears for hurt and wear. If you’re looking for a gear, make certain it has been totally tested and set up by a expert.

Planetary gearbox

A planetary motor and gearbox are a common blend of electrical and mechanical electrical power sources. They share the load of rotation in between numerous gear enamel to increase the torque ability. This design is also much more rigid, with reduced backlash that can be as minimal as a single or two arc minutes. The rewards of a planetary gearmotor over a standard electric motor incorporate compact dimensions, substantial performance, and less risk of gear failure. Planetary equipment motors are also much more reputable and tough than traditional electric motors.
A planetary gearbox is created for a one phase of reduction, or a numerous-stage unit can be developed with a number of person cartridges. Equipment ratios may possibly also be selected in accordance to consumer desire, both to face mount the output phase or to use a 5mm hex shaft. For multi-phase planetary gearboxes, there are a selection of diverse possibilities obtainable. These incorporate high-effectiveness planetary gearboxes that accomplish a ninety eight% performance at solitary reduction. In addition, they are noiseless, and minimize warmth reduction.
A planetary gearbox could be utilised to enhance torque in a robot or other automatic program. There are distinct varieties of planetary gear sets available, such as gearboxes with sliding or rolling sections. When deciding on a planetary gearset, think about the environment and other variables this sort of as backlash, torque, and ratio. There are many benefits to a planetary gearbox and the advantages and drawbacks related with it.
Planetary gearboxes are equivalent to individuals in a solar system. They function a central solar gear in the middle, two or more outer gears, and a ring gear at the output. The planetary gears rotate in a ring-like structure close to a stationary solar gear. When the gears are engaged, they are linked by a carrier that is set to the machine’s shaft.
Motor

Planetary gear motor

Planetary gear motors lessen the rotational velocity of an armature by one or a lot more instances. The reduction ratio relies upon on the composition of the planetary gear unit. The planetary gear device has an output shaft and an armature shaft. A separating plate separates the two. The output shaft moves in a round sample to flip the pinion 3. When the pinion rotates to the engagement situation, it is engaged with the ring gear 4. The ring gear then transmits the rotational torque to the armature shaft. The outcome is that the motor cranks up.
Planetary gear motors are cylindrical in shape and are offered in numerous electrical power ranges. They are normally produced of steel or brass and include numerous gears that share the load. These motors can take care of huge electricity transfers. The planetary gear drive, on the other hand, demands more parts, this sort of as a sun’s gear and numerous planetary gears. As a result, it may not be suited for all varieties of apps. Consequently, the planetary gear push is usually employed for a lot more complex equipment.
Brush dusts from the electrical motor could enter the planetary equipment gadget and lead to it to malfunction. In addition, abrasion put on on the separating plate can have an effect on the equipment engagement of the planetary gear system. If this takes place, the gears will not interact effectively and might make noise. In buy to prevent these kinds of a predicament from transpiring, it is essential to regularly examine planetary gear motors and their abrasion-resistant separating plates.
Planetary gear motors arrive in many diverse energy levels and sizes. These motors are usually cylindrical in condition and are produced of metal, brass, plastic, or a mix of each components. A planetary gear motor can be employed in purposes where room is an situation. This motor also makes it possible for for lower gearings in little areas. The planetary gearing enables for huge quantities of power transfer. The output shaft measurement is dependent on the equipment ratio and the motor speed.

China Standard Constant Speed L Type Geared Hollow Shaft Gear Motor with ISO9001 4gnfs     near me supplier China Standard Constant Speed L Type Geared Hollow Shaft Gear Motor with ISO9001 4gnfs     near me supplier